

The most common case for symmetry are odd/even function.

odd function: Def: for $\forall x \in D(f)$, we have: f(x) = -f(-x) (so f(0) = 0)

Remark: From the definition we can see: for odd leven function, $\chi \in D(f) \Rightarrow -\chi \in D(f)$ which means its domain D(f) should be symmetric, like: [-5, 5], (-3,3), or (-3,0) U(0,3) all symmetric.

2. Useful formulas: (1) If f(x) is symmetric to X = a, then f(x) = f(2a - x)(2) If f(x) is symmetric to point (a,b), then f(x) = 2b - f(2a - x)

(21. Discuss the 3 properties of following functions.
(1)
$$y = e^{x}$$
 $D(f) = R$
Generally for $y = a^{x} (a \neq 0, a > 0) = \int_{0}^{0} \frac{\operatorname{strictly} \operatorname{increasing}}{\operatorname{constant}} a = 1$
 $\operatorname{strictly} \operatorname{increasing} D < a < 1$
 $\operatorname{for the} \{a > 1\}, \{0 < a < 1\} \text{ cases, we don't have ang "equality" which imples}$

y=a^x can't he period and symmetric.

But if we restrict the domain to $[0, \frac{1}{2}]$ then we don't have periodicity and symmetry, but we can join x is a increasing function $\cos x$ is a decreasing function . $\int_{1}^{1} \int_{1}^{1} \int_{1}$

(22.
(1) Assume
$$\frac{f(x)}{X}$$
 is decreasing in (0,100), show:
f(a+b) $\leq f(a) + f(b)$, $\forall a, b \in (0, 100)$
(2) Assume: $\frac{f(x)}{X}$ is increasing in (0,100), show:
f(a+b) $\geq f(a) + f(b)$, $\forall a, b \in (0, 100)$
Pf: (1) Try to construct the form of " $\frac{f(x)}{X}$ ", and we assume $a \geq b$.
 $\frac{f(a+b)}{a+b} \leq \frac{f(a)}{a}$ (From $\frac{f(x)}{X}$) (1)
then we just have to show: $\frac{f(a)}{a} \leq \frac{f(a)}{a+b} + \frac{f(b)}{a+b}$.
 $f(a)(\frac{1}{a} - \frac{1}{a+b}) = \frac{f(a)b}{a(a+b)} \leq \frac{f(b)}{a+b}$

$$f(a)\left(\frac{1}{a}-\frac{1}{a+b}\right)=\frac{f(a)}{a}\frac{b}{(a+b)} \leq \frac{f(a)}{a} \leq \frac{f(b)}{b}$$

And the last inequality is trival for we assume $a \ge b$, then $\frac{f(a)}{a} \le \frac{f(b)}{b} (\frac{f(x)}{x} b)$ Remark: if $a \le b$, we just choose $\frac{f(b)}{b}$ in (1) as intermediate value is b < c.

(2) this part is the same with (1)

Q3. Assume
$$f(x)$$
 is symmetric to $X = a$ and $x = b$. $a > b \implies$
Try to prove $f(x)$ is a period function, and compute its period.

Pf: Recall the formula of line symmetry. we have:

$$f(x) = f(2a - x), \quad f(x) = f(2b - x)$$

$$let t = 2b - x.$$
so
$$f(t) = f(2a - \frac{t}{2}) = f(2a - (2b - x)) = f(x + 2a - 2b)$$
while
$$f(t) = f(2b - x) = f(x), \quad so \quad f(x) = f(x + 2a - 2b)$$
which means $T = 2a - 2b > 0$.

Q.4. Assume we have
$$f(x)$$
 defined in [-1,1], try to show
there must exist an odd function $g(x)$ and an even function $h(x)$
which also defined in E1,1] sit $f(x) = g(x) + h(x)$.

Pf: Actually we just have to set:

$$g(x) = \frac{f(x) - f(-x)}{2}$$
, $h(x) = \frac{f(x) + f(-x)}{2}$.

then
$$f(x) = g(x) + h(x)$$
 is travel
And $g(-x) = \frac{f(-x) - f(x)}{2} = -g(x)$, $g(x)$ is odd.
 $f(-x) = \frac{f(x-x) + f(x)}{2} = f(x)$, $f(x)$ is even. Done.

But a question is: how can we think of such construction? Actually we just need assume we have such represention first, means: f(x) = g(x) + h(x) (1) and g(x) is odd, h(x) is even.

then we know the odd and even both have relationship to (-x), so we set x be -x:

$$f(-x) = g(-x) + h(-x) = -g(x) + h(x)$$
 (2)

combine (1), (2); we can solve g(x), h(x) out: just $g(x) = \frac{f(x) - f(-x)}{2}$, $h(x) = \frac{f(x) + f(-x)}{2}$ Math 1010 Tutorial 2 (Prepared by Chung Shun Wai) Topics: Odd and even function, Injectivity and Surjectivity

Q1: Determine whether the function is odd or even i) $f: \mathbb{R}^{\times} \to \mathbb{R}^{+}$; $f(x) = x^{-2}$ ii) $f: \mathbb{R} \to \mathbb{R}$; $f(x) = \frac{e^{x} - e^{-x}}{2}$

Q2: Determine whether the function is injective or surjective

i) $f: \mathbb{R} \to \mathbb{R}$; f(x) = |x-2|+3ii) $f: \mathbb{R} \setminus \{2\} \to \mathbb{R}$; $f(x) = \frac{3x+1}{x-2}$ iii) $f: \mathbb{R}^{x} \to \mathbb{R}^{+}$; $f(x) = x^{-2}$ iv) $f: \mathbb{R} \to \mathbb{R}$; $f(x) = \frac{e^{x}-e^{-x}}{2}$

Pi) given
$$f: \mathbb{R} \rightarrow \mathbb{R}$$
 if $f(x) = |x-2|$
 $lnj:$ Suppose $f(x) = f(y) \Rightarrow$
 $\Rightarrow x-2 = \pm(y-2) \Rightarrow x =$
 $ln particular, x = 1, y = 3$ we
Hence f is not inj.
 $\frac{Surj}{N}$ Notice that $f(x) = 1$ and $f(x) = 1$ and $f(x) = 3$
Hence $f(x) = 1$ and $f(x) = 3$
Hence $f(x) = 1$ and $f(x) = 3$

21 + 3 $1 \times -21 + 3 = 1 \cdot 3 - 21 + 3$ $y \quad or \quad x = -y + 4$ $z \quad have \quad f(1) = f(3) = 4$

3 ⇒ Range(f) ⊆ [3,∞) surj.

د

Given $f: \mathbb{R} \setminus \{2\} \rightarrow \mathbb{R} \Rightarrow f(x) = \frac{3x+1}{x-2}$. ゝ") l_{nj} : Suppose that f(x) = f(y) for some $x, y \in \mathbb{R} \setminus \{2\}$. $\Rightarrow \frac{3x-1}{x-2} = \frac{3y-1}{y-2} \Rightarrow (3x-1)(y-2) = (3y-1)(x-2)$ ⇒ 3xy+2-y-6x = 3xy+2-x-6y ⇒7x=7y ⇒ x=y Hence f is injective. Surj. Notice that 3 & Range of F. Assume the contrary that f(x)=3 for some x G (R \ {2}). then $3 = \frac{3x+1}{x-2} \implies 3x-6 = 3x+1 \implies 7 = 0$ (impossible) Hence f is not surjective.

2iii) given $f: \mathbb{R}^{\times} \to \mathbb{R}^{+} : f(x) = \frac{1}{x^{2}}$ Inf. from question (1i), f is even. (i.e. f(-x) = f(x)) in particular f(-1) = f(1) = 1 Hence f is not injective. Surj Fix y e Rt, Suppose that fixs=y for some XE R* then f(x) = $\frac{1}{x^2} = \frac{1}{y} \Rightarrow x^2 = \frac{1}{2} = \frac{1}{y} \Rightarrow x = \pm \frac{1}{y}$ Hence f is surjective

18/9/2014 Math 1010 C. Tutorial -2. Recall: Exponential function: $exp(x) = e^{\chi} = 1 + \chi + \frac{\chi^2}{2} + \frac{\chi^3}{6} + \cdots$ $e^{\chi} \cdot monotonely = \sum_{k=0}^{\infty} \frac{\chi k}{k!};$ increasing; $\chi \cdot e^{\chi} z_{0};$ $\chi \cdot e^{\chi} p(\chi+q) = e^{\chi}p(\chi) \cdot e^{\chi}p(q)$ (0,1) $\cdot exp(x+y) = exp(x) \cdot exp(y).$ $ln(1+\chi) = \chi - \frac{\chi^2}{2} + \frac{\chi^3}{5} - \frac{\chi^4}{4} = -$ Logarithm function : $= \sum_{k=1}^{10} (-1)^{k+1} \frac{2^k}{k} ;$. montonely -increasing; lnx $ln: R_{70} \rightarrow IR;$ ln(x,y) = lnx + lny;· lnx is the inverse for of exp(n) <u>Trigonometric</u> functions: $\sin x = x - \frac{x^2}{3!} + \frac{x^5}{5!}$ $= \sum_{k=1}^{\infty} (-1)^{k-1} \frac{\chi^{2k-1}}{(2k-1)!} i$ $\begin{array}{rcl} \cos \chi & \sin \chi & = & 1 - & \frac{\chi^2}{2!} + & \frac{\chi^4}{4!} & . \\ & & = & \sum_{k=0}^{\infty} & (-1)^k & \frac{\chi^{2k}}{(2k)!} \end{array}$ スシ Properties: · Periodic: Sin(X+2TI) = Sin X; YXEIR; YXEIP; $\cos(\chi + 2\pi) = \cos \chi;$ YRER, $Even \in ODD$: Sin(-x) = -Sinx; YXEIP; $\cos(-x) = \cos x;$ $(\sin x)^{2} + (\cos x)^{2} = 1;$ (Aften denoted $\sin^{2}x + \cos^{2}x = 1$). . Relation : $Sin(x+\frac{\pi}{2}) = Cos x;$ TA2-0

Now :

(Ayperbolic functions: $\sinh(x) := x + \frac{\chi^{3}}{3!} + \frac{\chi^{5}}{5!} + \frac{\chi^{7}}{7!} + \dots = \sum_{k=0}^{\infty} \frac{\chi^{2k+1}}{(2k+1)}$ isint[](2/2+1)! $\cosh(x) := 1 + \frac{\chi^2}{2!} + \frac{\chi^4}{4!} + \frac{\chi^6}{6!} + \dots = \sum_{k=0}^{\infty} \frac{\chi^{2k}}{(2k)!}$ 1'sints "odel exponent part " Sinkin) 1'KD[] v.s exp(x)? Y°0 $exp(x) = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \cdots$ "even export port" (osh(R) $e_{\chi}(-\chi) = 1 - \chi + \frac{\chi^2}{2!} - \frac{\chi^3}{2!} + \frac{\chi^4}{4!} - \frac{\chi^5}{5!} + \frac{\chi^6}{6!} - \frac{\chi^7}{7!} + \cdots$ $\sinh(x) = \frac{e^{x} - e^{-x}}{2}; \quad \cosh(x) = \frac{e^{x} + e^{-x}}{2}$ (α) (b) sinh(-x) = -sinh(x); cosh(-x) = cosh(x);Relation between sinh(x) & cosh (x)? (c) $\cosh^2 x - \sinh^2 x = 1.$ Reason: From (a), $\cosh^2 x - \sinh^2 x = \left(\frac{e^{x} + e^{-x}}{2}\right)^2 - \left(\frac{e^{x} - e^{-x}}{2}\right)^2$ $= \frac{e^{2x} + 2 + e^{-2x}}{4} - \frac{e^{2x} - 2 + e^{2x}}{4} =$ 22-y2=1 unit hyporbola Remark: (i) Recall x coshd n2+y=1. cincle (cosd, sind) sinha 1 74 de(-00, +00) Marea

(cosd, sind) parametrize unit the circle; (cosha, sinha) parametrize unit hyperbola; O (" unit circle in "Minkowski space" space-time for general the (ii) paph of sinh X & cosh X; Use $\frac{1}{2}e^{\chi} \otimes \frac{1}{2}e^{-\chi}$ as auxilliary function; coshX . sinh x (iii) sinh x is monotonely increasing: sinh: IR > IR; $rac{1}{2}$ = $\frac{1}{2}$ = $\frac{$ $\iff (e^{\chi})^2 - 2y \cdot (e^{\chi}) - 1 = 0$, Note that $e^{\chi} = 70$ $\Rightarrow \chi = ln(y + \sqrt{y^2 + 1});$ Plence the inverse fin of sinh(x) is $f(x) = \ln(x + \sqrt{1 + x^2})$.

Math 1010C Term 1 2014 Supplementary exercises 1

The following exercises are optional, and for your own enjoyment only.

- 1. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be *even* if f(x) = f(-x) for all $x \in \mathbb{R}$, and *odd* if f(x) = -f(-x) for all $x \in \mathbb{R}$.
 - (a) Suppose $p: \mathbb{R} \to \mathbb{R}$ is the polynomial function

$$p(x) = \sum_{n=0}^{d} a_n x^n.$$

Show that p is even if and only if $a_n = 0$ for all odd integers n.

- (b) Let p be as in part (a). Find a necessary and sufficient condition on the coefficients of p, such that p is odd.
- (c) Is there a function $g: \mathbb{R} \to \mathbb{R}$ that is neither even nor odd?
- (d) Is there a function $h: \mathbb{R} \to \mathbb{R}$ that is both even and odd?
- (e) Show that every function $f : \mathbb{R} \to \mathbb{R}$ can be written as the sum of an odd function and an even function.
- (f) For those who know derivatives already: show that the derivative of an odd function is even, and the derivative of an even function is odd.
- (g) For those who know some linear algebra: Does the set of all even functions from \mathbb{R} to \mathbb{R} form a vector space over \mathbb{R} ? What about the set of all odd functions?
- 2. The following generalizes the concept of odd and even functions defined above. Suppose X is a set, and $\theta: X \to X$ is an *involution*, in the sense that $\theta \circ \theta$ is the identity function on X (i.e. $\theta(\theta(x)) = x$ for all $x \in X$).
 - (a) Show that $\theta \colon X \to X$ is a bijection.
 - (b) A function $f: X \to \mathbb{R}$ is said to be even with respect to θ if $f(\theta(x)) = f(x)$ for all $x \in X$. A function $f: X \to \mathbb{R}$ is said to be odd with respect to θ if $f(\theta(x)) = -f(x)$ for all $x \in X$.
 - (i) Find all functions $F: X \to \mathbb{R}$ that is both even with respect to θ , and odd with respect to θ .
 - (ii) Show that every function $f: X \to \mathbb{R}$ can be written as the sum g + h, where $g: X \to \mathbb{R}$ is odd with respect to θ , and $h: X \to \mathbb{R}$ is even with respect to θ .
 - (c) How is all this relevant to Question 1?
 - (d) For those who know complex numbers already: Did it matter that we considered functions that took values in \mathbb{R} ? What if we considered complex-valued functions?
- 3. (a) Is there a bijection from \mathbb{N} to \mathbb{Z} ? If yes, construct one.
 - (b) Is there a bijection from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$? (The latter is the set of ordered pairs (m, n), where m and n are both positive integers.) If yes, construct one. (Hint: Draw a picture to visualize $\mathbb{N} \times \mathbb{N}$.)
 - (c) Is there a bijection from \mathbb{N} to \mathbb{Q} ? If yes, construct one. (Hint: Use part (b).)

(d) (Challenge) A sequence of positive integers is an ordered list $(a_1, a_2, a_3, ...)$, where each a_i is a positive integer. The set of all sequences of positive integers is usually denoted $2^{\mathbb{N}}$. Is there a bijection from \mathbb{N} to $2^{\mathbb{N}}$?

 $\mathbf{2}$

$$\frac{(8/9/2014)}{(8/9/2014)} \qquad Math. 1010 C \quad Tutorial -2.$$

$$\frac{84441}{(2014)} \underbrace{\text{Math. 1010 C}}_{n=0} \quad Tutorial -2.$$

$$\frac{84441}{(2014)} \underbrace{\text{Math. 1010 C}}_{n=0} \quad Tutorial -2.$$

$$\frac{84441}{(2014)} \underbrace{\text{Math. 1010 C}}_{n=0} \quad Tutorial -2.$$

$$\frac{844}{(2014)} \underbrace{\text{Math. 1010 C}}_{n=0} \quad \frac{1}{2} (2n \times n) = \frac{1}{2} (2n \times n);$$

$$\frac{1}{(2014)} \underbrace{\text{Math. 1010 C}}_{n=0} \quad \frac{1}{(2014)} \underbrace{\text{Math. 1010 C}}_{n=0} \quad \frac{1}{(20$$

2. (a)
$$Q: X \rightarrow X$$
 involution, i.e. $Q(Q(X)) = X, \forall X;$
then Q is surjective, since $\forall y \in X, \exists x := O(y),$
s.t. $Q(X) = Q(Q(y)) = Y;$
Q is injective, since if $\chi_1, \chi_2 \in X, s.t$
 $Q(\chi_1) = Q(\chi_2),$ then apply Qo too both sides
 $\chi_1 = Q(Q(\chi_1)) = Q(Q(\chi_2)) = \chi_2;$

(d). Exactly the same. Setually you can consider fins take values in any field ite set char(1k) = 2, then you get exactly the same story.

3. (a) consider the map
$$f: |N \rightarrow \mathbb{Z}$$
, s.t. $S f(2n) = -n$;
 $g \circ O(2n \rightarrow 0)$
 $f: |N \rightarrow 1$
 $2n \rightarrow 1$
 $2n \rightarrow 1$
 $2n \rightarrow 1$
 $2n \rightarrow 1$
 $4n \rightarrow 2$, $...$
(b). YES, consider $g: |N \rightarrow |N \times |N|$, s.t
 $g(n) = \left(N - \left(n - \frac{N(N+1)}{2} - 1\right), n - \frac{N(N+1)}{2} - 1\right)$
 $fn \ N \in N \ s.t$. $\frac{N(N+1)}{2} < n \le \frac{(N+1)(N+1)}{2}$

(c). First, construct a bijection from Q₊ := } f ∈ Q [f > 0 } to IN × IN, indicated as follows:

4 56 78 9 10 NYIN THY 9 11 13 15 52 イン 19 --. 1sh 43 5373 12 8 3 $\frac{13}{3}$ $\frac{11}{3}$ 14/23 Br 3 5 7 9 14 4 134 54 174 19 Z 615 2 3 5 4 5 815 15 125 13 17 19 23 25 29 166716 1777 47 5/8 7 8 8 11 13 15 17 19 18 3/8 79919111314 499 197 11 13 17 19 21 23 10 10 10 b. jection

then compose with $N \xrightarrow{2} W \times N \xrightarrow{n} O_{+}$ gives $N \xrightarrow{r} O_{+}$ extends to $Z \xrightarrow{2} O Q \qquad J \qquad J \qquad J \qquad L(n) = l(n+1), n > 0;$ but $N \xrightarrow{l} Z \qquad Gjeutin, hence \qquad (J(-n) = -l(n), n < 0;)$ $N \xrightarrow{l} Z \xrightarrow{r} O \qquad S \qquad Gjeution.$

TK2-2

The can construct directly bijection from fink: to Q as follows:

⊙ (1 (-1) (5 (-2) 3 (-3) 4 (-4) 5 (-5) ···· N $\overline{1} (-\overline{1}) (-\overline{2}) (-\overline{2})$ S $(\frac{1}{3})(-\frac{1}{3})^{\frac{2}{3}}(-\frac{1}{3})^{\frac{2}{3}}(-\frac{1}{3})^{\frac{4}{3}}(-\frac{4}{3})^{\frac{4}{3}}(-\frac{4}{3})^{\frac{4}{3}}$ Ð 2°°(₹0,13) = { maps from IN +0} {0,13} $\overline{4}$ $(\frac{1}{4})$ $\frac{3}{4}$ $(-\frac{3}{4})$... $= \left\{ sequence \underline{a} = (a_i, a_{ij}, ...) \right\}$ s.t $a_i \in \{0, 1\}$ (d). Is there a bijection from IN to (2)? Prove by contradiction. Assume YES, then we can list all elements of 2^{W} in a sequence. say $\{Q_n\}_{n=0}^{\infty}$; where Q_n is a sequence (Q_{n1}, Q_{n2}, \dots) . We list all elts $Q_i \in \{0, 1\}$ of 2^{W} as follows: $a_{ij} \in \{0,1\}$; Q1: (a11, a12, a13, a14,) $a_2:$ ($a_{21}, a_{22}, a_{23}, a_{24}, \dots$) $a_{2j} \in \{0, 1\}$; $\Delta_3:$ ($\Delta_{31}, \Delta_{32}, \Delta_{33}, \Delta_{34}, \ldots$) $\Delta_{3j} \in \{0, 1\}$, Nous consider a sequence $\underline{\mathcal{L}} = (\chi_1, \chi_2, \chi_3, \ldots)$ $\chi_j \in \{0, 1\}$. (mod 2) sit $\chi_n = Q_{nn} + 1$. (The main point to: $\chi_n \pm Q_{nn}$.) Then χ can not appear in above list, $\forall n \in \mathbb{N}$ Because, if, say, $\underline{\chi} = \underline{Q}N$, for some $N \in IN$, then $(\chi_1, \chi_2, \dots, \chi_N, \dots)$ $\forall (Q_{N1}, Q_{N2}, Q_{N3}, \dots, Q_{NN}, Q_{N(N+1)}, \dots)$ $\chi_N = Q_{NN}$, but $\chi_N = Q_{NN} + 1$ By construction. Contradiction!

$$\begin{array}{c} \underbrace{\text{MATH 1010C}}_{\text{C}} & \underline{\text{TUDRSAL-2}}_{\text{C}} & \underline{\text{SOPPLEMENT}}_{\text{C}} & \underline{\text{Relations}} & \underline{\text{Relations}} \\ \underline{\text{A}}: & \underline{\text{WHY}} & \underline{\text{fulgernometric}} & \underline{\text{functions}} & \underline{\text{ane}} & \underline{\text{functions}} \\ \underline{\text{Sin } X = x - \frac{x^3}{2!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \\ \underline{\text{Cos } x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \\ \underline{\text{Cos } x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \\ \underline{\text{Suick}} & \underline{\text{uny}} : & \frac{\pi^2}{\text{Sin}^2 \pi x} = \frac{\pm x^0}{2} \frac{1}{(x-n)^2} = \frac{1}{x^2} + \frac{1}{(x-1)^2} + \frac{1}{(x+1)^2} + \frac{1}{(x+3)^2} + \frac{1}{(x+3)^2} \\ \underline{\text{Cos } x^{-1} + \frac{1}{(x+3)^2} + \frac{1}{(x+3)^2} + \frac{1}{(x+3)^2} + \frac{1}{(x+3)^2} \\ \underline{\text{Cos } x^{-1} + \frac{1}{(x+3)^2} + \frac{1}{(x+3)^2} + \frac{1}{(x+3)^2} \\ \underline{\text{Cos } x^{-1} + \frac{1}{(x+3)^2} + \frac{1}{(x+3)^2} \\ \underline{\text{Cos } x^{-1} + \frac{1}{(x+3)^2}$$

Hence

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}; \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

;

Min, Jie jmin @ mash. cuhk. edu. hk Tutorial 2 2014/9/15 Some properties of functions odd : $f(-\pi) = -f(x)$, symmetric with respect to the origin. ⊁ -x f(-x) = -f(x)even: f(-x) = f(x), symmetric with respect to y-axis $-\gamma \qquad \gamma$ decide whether the function is even or odd: (1) $f(x) = \chi^3$ $f(-x) = (-x)^{5} = -x^{5} = -f(x)$ so f is odd (2) $f(X) = \frac{1}{X-1}$ $f(-\chi) = \frac{1}{-\chi-1}$ Take $\chi = 2$ for example, f(z) = 1, $f(-2) = -\frac{1}{3}$ So f is neither odd nor even. Also exist function booth odd and even.

* Injective : if
$$f(x_1) = f(x_2)$$
, then $x_1 = x_2$ ($\forall x_1, x_2$ is domain)
Surjective : $\forall y \in (u \text{ domain}, (un find $x \in \text{domain} \text{ s.t. } y = f(x))$
Surjective : $\forall y \in (u \text{ domain}, (un find $x \in \text{domain} \text{ s.t. } y = f(x))$
injustive : $f(x_1) \rightarrow \mathbb{R}$, $f(x) = \frac{2x - 9}{x + 3}$
 $= (2x_1 - 9)(x_2 + 3) + (x_2 - 9)(x_1 + 3)$
 $= (2x_1 - 9)(x_2 + 3) + (x_2 - 9)(x_1 + 3)$
 $= (2x_1 - 9)(x_2 + 3) + (x_2 - 9)(x_1 + 3)$
 $= (2x_1 - 9)(x_2 + 3) + (x_1 - 2) = 0$
 $\Rightarrow 2x_1 - 2x_2 - 9x_2 + 5x_1 - 2] - (2x_1 - 9x_1 + 5x_1 - 2) = 0$
 $<= x_1 - x_2$
 $S = f(x) = \frac{2x - 9}{x + 3}$ is injective.
Surjective? : $\forall y \in \mathbb{R}$, if $y = \frac{2x - 9}{x + 3}$
 $<= x_1 + 5y_1 - 2x - 9 \Rightarrow x = \frac{2x - 9}{x + 3}$
So we have no solin to x when $y = 2$
So $f(x) = x_1 + 5x_2 + 9 = 2x_1 + 9$
So we have no solin to x when $y = 2$
So $f(x) = x_1 + 5x_2 + 9 = 2x_1 + 9$
 $S = f(x) = f(x_1) - f(x_2) = L_m(x_1 + 5x^{1+1}) - L_m(x_2 + 5x_2^{1+1})$
 $= L_m(\frac{(x_1 + 5x_1^{1+1})}{(x_2 + 5x_2^{1+1})}$
 $<= y + \frac{x_1 + 5x_2^{1+1}}{x_2 + 5x_2^{1+1}}$$$

$$(x_{1}, x_{1}) + [x_{1}^{2} + (x_{1}^{2} + 1) = 0$$

$$(x_{1}, x_{1}) + \frac{x_{1}^{2} - x_{1}^{2}}{(x_{1}^{2} + 1) + [x_{1}^{2} + 1]} = 0$$

$$(x_{1}, x_{2}) \left(1 + \frac{x_{1} + x_{2}}{(x_{1}^{2} + 1) + [x_{1}^{2} + 1]}\right) = 0$$

$$(x_{1}, x_{2}) \left(1 + \frac{x_{1} + x_{2}}{(x_{1}^{2} + 1) + [x_{1}^{2} + 1]}\right) = 0$$

$$(x_{1}, x_{2}) \left(1 + \frac{x_{1} + x_{2}}{(x_{1}^{2} + 1) + [x_{1}^{2} + 1]}\right)$$

$$(x_{1} + x_{2}) = |x_{1}| + |x_{2}|$$

$$(x_{1}^{2} + x_{2}) = |x_{1} + x_{2}|$$

$$(x_{1}^{2} + x_{2}) = |x_{1} + x_{2}|$$

$$(x_{1}^{2} + x_{2}) = 0$$

$$(x_{1} + x_{2}) = (x_{1} + x_{2})$$

$$(x_{1}^{2} + x_{2}) = (x_{1} + x_{2})$$

$$(x_{2}^{2} + x_{2}) = (x_{1} + x_{2})$$

* Exercise : determine whether the function is injective, surjective or not. (1) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{\sqrt{x^2+1}}$ $(2) f: \mathbb{R}^+ \to \mathbb{R}^+, \quad f(x) = |x-2| + 3$ (1) Injective: $0 = f(X_1) - f(X_2) = \frac{\chi_1}{\sqrt{\chi_1^2 + 1}} - \frac{\chi_2}{\sqrt{\chi_2^2 + 1}} = \frac{\chi_1 \sqrt{\chi_2^2 + 1} - \chi_2 \chi_1^2 + 1}{\sqrt{\chi_1^2 + 1} \sqrt{\chi_1^2 + 1}}$ $() \qquad \gamma_1 \sqrt{\chi_2^2 + 1} - \Lambda_2 \sqrt{\chi_1^2 + 1} = 0$ $\frac{\gamma_{1}^{2}(\chi_{2}^{2}+1)-\gamma_{2}^{2}(\chi_{1}^{2}+1)}{\chi_{1}\chi_{2}^{2}+1+\chi_{2}\chi_{2}^{2}+1}=0$ $(\Rightarrow \chi_1^2 - \chi_2^2 = (\chi_1 - \chi_2) (\chi_1 + \chi_2) = 0$ Note $f(x_1) \neq f(x_2)$ when $x_1 = -x_2$, so we reject $x_1 + x_2 = o''$ SU $\chi_1 = \chi_2$ Surgentive: VyER, y= Jx+1 $y^2 = \frac{x^2}{x^2 + 1}$, (=) $\chi^2 y^2 + y^2 = \chi^2$ (=) $\chi^2 = \frac{y}{1 - y^2}$ So when y= ±1, there is no solin for x. (2) f(x) = |x-2| + 3. T_{y} edive: $D = f(x_1) - f(x_2) = |x_1 - 2| - |x_2 - 2|$ (=) $|\chi_{1-2}| = |\chi_{2-2}|$ (=) $(\chi_{1-2})^{2} = (\chi_{2-2})^{2}$ $(\gamma_1 - \gamma_2)(\gamma_1 + \gamma_2 - 4) = 0$ Not injective. $\chi_1 = \chi_2$ or $\chi_1 + \chi_2 = 4$.

Surjective: ¥ y ERt, y = 1x-21+3 |x-2| = y-3 ≥0 So we have solin for x only of y>3. NOT Surjective.